

FIGURE 19. EFFECT OF LINER SIZE ON PRESSURE-TO-STRENGTH RATIO,  $p/\sigma,$  FOR RING-SEGMENT CONTAINER

The pressures  $p_2$  and  $q_2$  are related to  $p_1$  and  $q_1$  via Equations (54a, b).  $p_1$  and  $q_1$  are related by Equation (58) with  $q_3 \equiv 0$ . One other equation involving  $p_1$  and  $q_1$  is needed which is found from the Definition (13b) for the parameter  $\alpha_m$ , i.e.,

$$\alpha_{m}\sigma_{1} = \sigma_{m} = \frac{(\sigma_{\theta})_{max} + (\sigma_{\theta})_{min}}{2} = \frac{p}{2} \frac{k_{1}^{2} + 1}{k_{1}^{2} - 1} - \frac{(p_{1} + q_{1})}{k_{1}^{2} - 1} k_{1}^{2}$$

at ro.

Solving for  $p_1$  and  $q_1$ , finding  $p_2$  and  $q_2$ , substituting into Equation (65), and solving for  $p/\sigma_3$ , one obtains

$$\frac{p}{\sigma_3} = \frac{(k_3^2 - 1)}{k_3^2 \left\{ \frac{2}{k_2} \frac{q_1}{p} + \frac{5}{g(k_1^2 - 1) k_2} + \frac{5}{2} \frac{p_3}{p} \left[ \frac{2E_1}{gE_2} \frac{k_3^2}{(k_3^2 - 1)} - 1 \right] \right\}}$$
(66)

where

$$\frac{q_1}{p} = \frac{(\alpha_r - \alpha_m)}{2} \frac{(k_1^2 - 1)}{k_1^2} \frac{\sigma_1}{p}$$

The pressure-to-strength ratios  $p/\sigma_1$  and  $p/\sigma_3$  are plotted in Figures 20 and 21 as a function of segment size  $k_2$  and wall ratio K' for  $k_1 = 1.1$ ,  $p_3/p = 0.2$ ,  $\alpha_r = 0.5$ , and  $\alpha_m = -0.5$ . The pressure-to-strength ratios increase with K' or equivalently with  $k_3$ , since K' =  $k_1k_2k_3$ . The behavior shown for  $k_1 = 1.1$  is the same as that found previously for the ring-segment container; i.e.,  $p/\sigma_3$  increases with increasing  $k_2$ , but  $p/\sigma_1$ decreases. However, if  $k_1$  is increased to 1.5 from 1.1, then  $p/\sigma_1$  also increases with  $k_2$  for large K' as shown in Figure 22.  $p/\sigma_3$  continues to increase with  $k_2$  as shown in Figure 23. Thus, both  $p/\sigma_1$  and  $p/\sigma_3$  increase with large K' for  $k_2 = 2.0$  and  $k_1 = 1.5$ . For values of  $k_2$  between 2.0 and 4.0, however, computer calculations show that  $p/\sigma_1$ and  $p/\sigma_3$  first continue to increase and then decrease.

The pressure-to-strength ratios can also be increased by increasing the support pressure p<sub>3</sub>. This is shown in Figure 24. With the high ratios shown, it is theoretically possible to have bore pressures as high as 1,000,000 psi in ring-fluid-segment container. However, <u>practicable</u> limitations regarding excessive interference and size requirements, which are discussed later, considerably reduce the pressure capability of this design.

The interferences and residual pressures for outer and inner parts of the ringfluid-segment container can be calculated using the analysis derived previously for the multi-ring container and the ring-segment container, respectively.